This is a guide for the R program MCMCtreeR.
MCMCtreeR contains functions to set up analyses in the MCMCtree program. The functions here help users choose the best parameters to reflect age information for prior age distributions, visualise time priors, and produce output files ready to be used in MCMCtree. A seperate vignette is available to explain the plotting options for timescaled trees in MCMCtreeR.
MCMCtree is a Bayesian program in the software PAML that estimates divergence times on fixed topologies using molecular data, developed by Ziheng Yang. The program requires various inputs from the user: a phylogeny, molecular sequence alignment, and selected model parameters. This guide does not include details about which time and other priors are most appropriate for the data, etc., so please see the MCMCtree manual for more information.
if(!any(rownames(installed.packages()) == "MCMCtreeR")) install.packages("MCMCtreeR")
library(MCMCtreeR, quietly=TRUE, warn.conflicts=FALSE)
##
## Attaching package: 'sn'
## The following object is masked from 'package:stats':
##
## sd
The examples here use a phylogeny of apes and associated age
information. These data are a phylogeny of apes apeTree
,
the minimum ages for internal nodes minimumTimes
, maximum
ages for internal nodes maximumTimes
, and the tip labels
descending from each node monophyleticGroups
. These example
data can be substituted for other data.
## [1] "minimumTimes" "maximumTimes" "monophyleticGroups"
## [4] "apeTree"
## nodeOne nodeTwo nodeThree nodeFour
## 1.5 0.6 0.8 1.3
## nodeOne nodeTwo nodeThree nodeFour
## 3.0 1.2 1.2 2.0
## [[1]]
## [1] "human" "chimpanzee" "bonobo" "gorilla" "sumatran"
## [6] "orangutan" "gibbon"
##
## [[2]]
## [1] "human" "chimpanzee" "bonobo" "gorilla"
##
## [[3]]
## [1] "human" "chimpanzee" "bonobo"
##
## [[4]]
## [1] "sumatran" "orangutan"
##
## Phylogenetic tree with 7 tips and 6 internal nodes.
##
## Tip labels:
## human, chimpanzee, bonobo, gorilla, orangutan, sumatran, ...
##
## Rooted; no branch length.
The order of the data must match in the minimumTimes
,
maximumTimes
, and monophyleticGroups
objects.
These data do not need to be given in the order they appear in the tree,
but the order must match in each object. For example, if the minimum age
for the root is the first element in minimumTimes
it must
also be the first element in the minimumTimes
and
monophyleticGroup
objects.
For this example there are four calibrated nodes. The MCMCtree
function tipDes
can be used to recreate the
monophyleticGroups
list object. First the ape
package is used to plot the tree and view the node label numbers.
Figure 1 Plot of the tree with node labelled with numbers
## [1] "gorilla" "human" "chimpanzee" "bonobo"
The calibrated nodes in this example are 8, 10, 11, and 13. The
function tipDes
takes the tree and node numbers as input
and returns the taxon names that descend from that node; this output can
be used directly in the functions below.
## $`8`
## [1] "gibbon" "gorilla" "orangutan" "sumatran" "human"
## [6] "chimpanzee" "bonobo"
##
## $`10`
## [1] "gorilla" "human" "chimpanzee" "bonobo"
##
## $`11`
## [1] "human" "chimpanzee" "bonobo"
##
## $`13`
## [1] "orangutan" "sumatran"
This section includes information to estimate and plot prior age distributions for node(s) used in MCMCtree divergence time estimation. The data required to do this are a phylogeny, minimum and maximum ages for the nodes with prior distributions, and taxa that descend from each node (please see above for information on how to make this various objects).
The code can be used to simultaneously estimate the parameter values that reflect the a priori time information for nodes and write files ready for MCMCtree input. MCMCtreeR can produce output files with the same type of distributions used to summarise a priori time information for all nodes, or different distributions can be used to reflect uncertainty on different internal nodes.
The functions here estimates the distribution parameters so that the distribution spans for user-supplied minimum bounds (lower age) and maximum bounds (upper age). By default, minimum ages are treated as ‘hard’ constraints and maximum ages are ‘soft’. The function then ensures that 97.5% of the distribution falls between these minimum and maximum ages. The code can estimate paramaters for the Cauchy, Skew t, Skew-normal, and Gamma distirbutions shown in the MCMCtree manual on page 49, and calibrated node priors can also be placed on trees for uniform (bound), fixed, and upper age.
For each function, if only a single value is provided for each parameter by the user, the function outputs warnings to indicate these values are recycled for each node.
The default arguments in the estimateSkewT
assumes the
user wants to estimate the scale of the distribution with a given shape
value (the default shape value is 50). The function estimates the
parameters with the user-supplied minimum and maximum ages for all
nodes, and the monophyletic groups that define the nodes.The output
skewT_results$MCMCtree
shows the estimated parameters in
the input ready for MCMCtree. Here the parameters for the Skew
t distributions are the location (lower node age), scale,
shape, and degrees of freedom.
skewT_results <- estimateSkewT(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE)
## [1] "warning - minProb parameter value recycled"
## [1] "warning - maxProb parameter value recycled"
## [1] "warning - estimateScale argument recycled"
## [1] "warning - estimateShape argument recycled"
## [1] "warning - estimateMode argument recycled"
## [1] "warning - shape parameter value recycled"
## [1] "warning - addMode parameter value recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
##
## 1 7 1
##
## 1 ((((human,(chimpanzee,bonobo))'ST(0.8,0.016,50,1)',gorilla)'ST(0.6,0.024,50,1)',(orangutan,sumatran)'ST(1.3,0.028,50,1)'),gibbon)'ST(1.5,0.059,50,1)';
##
## 1 //end of file
As explained above, if only a single value is provided for each parameter by the user, the function outputs warnings to indicate these values are recycled for each node.
The function plotMCMCtree
plots the estimated age
distributions given these parameters.
par(mfrow=c(2,2), family="Palatino")
for(i in 1:4) plotMCMCtree(skewT_results$parameters[i,], method="skewT", title=paste0("node ", i), upperTime=max(maximumTimes))
Figure 2 Skew t distributions for all nodes
##
## 1 7 1
##
## 1 ((((human,(chimpanzee,bonobo))'ST(0.8,0.016,50,1)',gorilla)'ST(0.6,0.024,50,1)',(orangutan,sumatran)'ST(1.3,0.028,50,1)'),gibbon)'ST(1.5,0.059,50,1)';
##
## 1 //end of file
If the distributions are acceptable, the output can be written into a
tree file ready to be input into MCMCtree using the function
estimateSkewT
. The functions will be written when the
argument writeMCMCtree
is set to TRUE
, and the
file is set using the MCMCtreeName
argument. Additionally,
a PDF file is output showing the estimated distributions if
plot=TRUE
and the file name can be specifying using the
argument pdfOutput
.
##
## 1 7 1
##
## 1 ((((human,(chimpanzee,bonobo))'ST(0.8,0.016,50,1)',gorilla)'ST(0.6,0.024,50,1)',(orangutan,sumatran)'ST(1.3,0.028,50,1)'),gibbon)'ST(1.5,0.059,50,1)';
##
## 1 //end of file
## not run
## skewT_results <- estimateSkewT(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE, pdfOutput="skewTPlot.pdf", writeMCMCtree=TRUE, MCMCtreeName="skewTInput.tre")
It is not necessary to specify the same shape value for each parameter: a different value of the shape parameter can be set for each distribution.
The function estimateSkewT
will take input minimum input
times, and estimate the value of the shape that will produce the desired
distribution with the scale parameter set to 0.05.
skewT_results <- estimateSkewT(minAge=minimumTimes[2], maxAge=maximumTimes[2], monoGroups=monophyleticGroups, scale=0.05, estimateShape=TRUE, estimateScale=FALSE, phy=apeTree, plot=FALSE, writeMCMCtree=FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## location scale shape df
## node_1 0.6 0.05 1 1
The estimateSkewNormal
function estimates the value of
the scale that will produce a skew normal distribution with the 97.5%
cumulative probability of the distribution at the maximum age.
skewNormal_results <- estimateSkewNormal(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, addMode=0.05, phy=apeTree, plot=FALSE)
## [1] "warning - minProb parameter value recycled"
## [1] "warning - maxProb parameter value recycled"
## [1] "warning - estimateScale argument recycled"
## [1] "warning - estimateShape argument recycled"
## [1] "warning - estimateMode argument recycled"
## [1] "warning - shape parameter value recycled"
## [1] "warning - addMode parameter value recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## location scale shape
## node_1 1.55 0.65 50
## node_2 0.65 0.25 50
## node_3 0.85 0.16 50
## node_4 1.35 0.29 50
These skew normal distributions can also be plotted to the screen.
par(mfrow=c(2,2), family="Palatino")
for(i in 1:4) plotMCMCtree(skewNormal_results$parameters[i,], method="skewNormal", title=paste0("node ", i), upperTime=max(maximumTimes))
Figure 3 Skew normal distributions for all nodes
Here the estimateCauchy
function is used to estimate
parameters and plot the example on page 49 of PAML manual.
example_page_50 <- estimateCauchy(minAge=1, maxAge=4.32, monoGroups=monophyleticGroups[[1]], phy=apeTree, offset=0.5, minProb=0.025, plot=FALSE)[[1]]
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
plotMCMCtree(example_page_50, method="cauchy", title=paste0("node ", i), upperTime=max(maximumTimes))
Figure 4 Cauchy distributions for all nodes (with a given scale)
The estimateCauchy
function will take minimum input
times, and estimate the value of the scale parameter that will produce a
Cauchy distribution with the 97.5% cumulative probability of the
distribution at the user-supplied maximum age.
cauchy_results <- estimateCauchy(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, offset=0.5, phy=apeTree, plot=FALSE)
## [1] "warning - minProb parameter value recycled"
## [1] "warning - maxProb parameter value recycled"
## [1] "warning - offset parameter value recycled"
## [1] "warning - scale parameter value recycled"
## [1] "warning - estimateScale argument recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## tL p c pL
## node_1 1.5 0.5 0.075 1e-300
## node_2 0.6 0.5 0.008 1e-300
## node_3 0.8 0.5 0.001 1e-300
## node_4 1.3 0.5 0.016 1e-300
par(mfrow=c(2,2), family="Times")
for(i in 1:4) plotMCMCtree(cauchy_results$parameters[i,], method="cauchy", title=paste0("node ", i), upperTime=max(maximumTimes))
Figure 5 Cauchy distributions for all nodes (with a given shape)
These plots indicate we may have constrained our distribution too much for the 2nd, 3rd, and 4th distribution so we can modify that to allow for a smaller offset.
cauchy_results <- estimateCauchy(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, offset=c(0.5, 0.1, 0.1, 0.05), phy=apeTree, plot=FALSE)
## [1] "warning - minProb parameter value recycled"
## [1] "warning - maxProb parameter value recycled"
## [1] "warning - scale parameter value recycled"
## [1] "warning - estimateScale argument recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## tL p c pL
## node_1 1.5 0.50 0.075 1e-300
## node_2 0.6 0.10 0.035 1e-300
## node_3 0.8 0.10 0.022 1e-300
## node_4 1.3 0.05 0.040 1e-300
par(mfrow=c(2,2), family="Times")
for(i in 1:4) plotMCMCtree(cauchy_results$parameters[i,], method="cauchy", title=paste0("node ", i), upperTime=maximumTimes[i])
Figure 6 Cauchy distributions for all nodes (with a given shape) and smaller offset
uniform_results <- estimateBound(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE)
## [1] "warning - minProb parameter value recycled"
## [1] "warning - maxProb parameter value recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## tL tU pL pU
## node_1 1.5 3.0 0.025 0.025
## node_2 0.6 1.2 0.025 0.025
## node_3 0.8 1.2 0.025 0.025
## node_4 1.3 2.0 0.025 0.025
par(mfrow=c(2,2), family="Palatino")
for(i in 1:4) plotMCMCtree(uniform_results$parameters[i,], method="bound", title=paste0("node ", i), upperTime=maximumTimes[i]+1)
Figure 7 Uniform distributions for all nodes
gamma_results <- estimateGamma(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, alpha=188, beta=2690, offset=0.1, phy=apeTree, plot=FALSE)
## [1] "warning - alpha parameter value recycled"
## [1] "warning - beta parameter value recycled"
## [1] "warning - offset parameter value recycled"
## [1] "warning - estimateAlpha argument recycled"
## [1] "warning - estimateBeta argument recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## alpha beta
## node_1 4304 2690
## node_2 1883 2690
## node_3 2421 2690
## node_4 3766 2690
par(mfrow=c(2,2), family="Palatino")
for(i in 1:4) plotMCMCtree(gamma_results$parameters[i,], method="gamma", title=paste0("node ", i), upperTime=maximumTimes[i])
Figure 8 Gamma distributions for all nodes
upper_results <- estimateUpper(maxAge=maximumTimes, monoGroups=monophyleticGroups, rightTail=0.025, phy=apeTree)
## [1] "warning - maxProb parameter value recycled"
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## tU pR
## node_1 3.0 0.025
## node_2 1.2 0.025
## node_3 1.2 0.025
## node_4 2.0 0.025
fixed_results <- estimateFixed(minAge=minimumTimes[1], monoGroups=monophyleticGroups[[1]], phy=apeTree)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## $parameters
## fixed age.nodeOne
## 1.5
##
## $apePhy
##
## Phylogenetic tree with 7 tips and 6 internal nodes.
##
## Tip labels:
## human, chimpanzee, bonobo, gorilla, orangutan, sumatran, ...
## Node labels:
## '=1.5'
##
## Rooted; no branch length.
##
## $MCMCtree
##
## 1 7 1
##
## 1 ((((human,(chimpanzee,bonobo)'=1.5')'=1.5',gorilla)'=1.5',(orangutan,sumatran)'=1.5')'=1.5',gibbon)'=1.5';
##
## 1 //end of file
##
## $nodeLabels
## [1] "'=1.5'"
It is possible to specify different node calibration distributions to
each calibrated node. we can specify this by using the
MCMCtreePhy
function. Here there are different
distributions applied to the internal nodes: a fixed root (node 1), skew
normal (node 2), gamma (node 3), and upper distribution (node 4). For
each input we give the associated parameter values in a vector in the
order of nodes. i.e., for the minProb
on four nodes can be
set as 1, 2, 4 to be 1e-8 and node 3 to be 0.025
each.node.method <- c("skewT", "cauchy", "gamma", "upper")
output.full <- MCMCtreePhy(phy=apeTree, minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, method=each.node.method, writeMCMCtree = FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
This can fine-tuned. For example, to estimate alpha not beta for the 3rd node
estimate.alpha <- c(FALSE, FALSE, TRUE, FALSE)
estimate.beta <- c(TRUE, TRUE, FALSE, TRUE)
outputFull <- MCMCtreePhy(phy=apeTree, minAges=minimumTimes, maxAges=maximumTimes, monoGroups=monophyleticGroups, method=each.node.method, estimateAlpha=estimate.alpha, estimateBeta=estimate.beta, alpha=188, beta=100, writeMCMCtree = FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
Outputs from individual methods can be added to the input for subsequent node estimation. This allows for easier fine-tuning. Perhaps easier to explain with an example. Here, a skew normal calibration is applied to the first node.
skewNormal_results_nodeOne <- estimateSkewNormal(minAge=minimumTimes[1], maxAge=maximumTimes[1], monoGroups=monophyleticGroups[[1]], addMode=0.05, phy=apeTree, plot=FALSE, writeMCMCtree = FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
##
## Phylogenetic tree with 7 tips and 6 internal nodes.
##
## Tip labels:
## human, chimpanzee, bonobo, gorilla, orangutan, sumatran, ...
## Node labels:
## 'SN[1.55~0.65~50]'
##
## Rooted; no branch length.
This output is then used as input in estimateCauchy
to
estimate parameters for a Cauchy distribution, which is applied to the
second node.
cauchy_results_nodeTwo <- estimateCauchy(minAge=minimumTimes[2], maxAge=maximumTimes[2], monoGroups=monophyleticGroups[[2]], offset=0.5, phy=skewNormal_results_nodeOne$apePhy, plot=FALSE, writeMCMCtree = FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
##
## Phylogenetic tree with 7 tips and 6 internal nodes.
##
## Tip labels:
## human, chimpanzee, bonobo, gorilla, orangutan, sumatran, ...
## Node labels:
## 'SN[1.55~0.65~50]', NA, 'L[0.6~0.5~0.008~1e-300]'
##
## Rooted; no branch length.
The third node is the set as a uniform distribution.
uniform_results_nodeThree <- estimateBound(minAge=minimumTimes[3], maxAge=maximumTimes[3], monoGroups=monophyleticGroups[[3]], phy=cauchy_results_nodeTwo$apePhy, plot=FALSE, writeMCMCtree = FALSE)
## Warning in .write.tree2(phy[[i]], digits = digits, tree.prefix = tree.names[i],
## : Length of node.label does not match number of nodes.
##
## Phylogenetic tree with 7 tips and 6 internal nodes.
##
## Tip labels:
## human, chimpanzee, bonobo, gorilla, orangutan, sumatran, ...
## Node labels:
## 'SN[1.55~0.65~50]', NA, 'L[0.6~0.5~0.008~1e-300]', 'B[0.8~1.2~0.025~0.025]'
##
## Rooted; no branch length.
The fourth is a skewT distribution, and the tree can be written to file for input into MCMCtree.